

Universidade Federal Fluminense Instituto de Química GQA - Departamento de Química Analítica

Química Analítica I 2015

Profa: Flávia Marques

7ª Lista de Exercícios

Ácidos e bases polipróticos

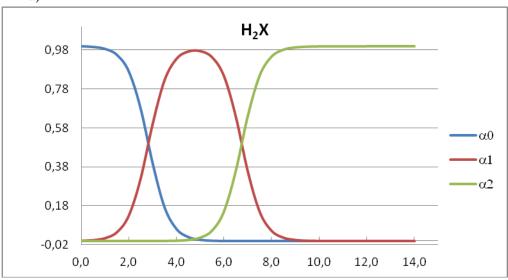
Tampões polipróticos

Distribuição das espécies

1 – Um ácido diprótico H_2X possui as seguintes constantes de dissociação em água: $Ka_1 = 1,50 \times 10^{-3}$; $Ka_2 = 1,80 \times 10^{-7}$. A partir desta informação, pede-se:

- a) Esboce o gráfico de distribuição de espécies
- b) Escreva as equações das reações de dissociação do ácido em solução aquosa
- c) Montar o sistema de equações necessários para calcular as concentrações de todas as espécies em solução.
- d) Calcular a concentração de todas as espécies e o pH de uma solução 0,010 mol L^{-1} de H_2X . Considere μ =0.
- **2 –** Esboce um gráfico de distribuição e calcule o pH de uma solução 0,0100 mol L^{-1} de NaH₂AsO₄. Dados: pKa₁ = 2,22; pKa₂ = 6,98, pKa₃ = 13,53
- **3 –** Uma solução 0,050 mol L⁻¹ de ácido cítrico (H₃Cit) tem pH igual a 3,95. Calcule a concentração de todas as espécies químicas derivadas do H₃Cit nesta solução. Dados: $Ka_1 = 7,45 \times 10^{-4}$; $Ka_2 = 1,73 \times 10^{-5}$; $Ka_3 = 4,02 \times 10^{-7}$.
- **4 –** Considere o ácido poliprótico fraco H_3N com as seguintes constantes de dissociação: $pKa_1 = 2,55$; $pKa_2 = 6,92$; $pKa_3 = 12$. Pede-se:
 - a) Esboce um gráfico de distribuição de espécies
 - b) Calcular o pH de uma solução 0,10 mol L⁻¹ de KH₂N
 - c) Calcular o pH de uma solução 0,010 mol L⁻¹ de K₂HN
 - d) Calcular o pH de uma solução 0,010 mol L⁻¹ de K₃N

5 – Um ácido triprótico H₃C se dissocia como indicado abaixo:


$$\begin{array}{ll} H_3C + H_2O \rightarrow H_2C^- + H_3O^+ & \text{acido forte} \\ H_2C^- + H_2O \leftrightarrow HC^{2-} + H_3O^+ & \text{Ka}_2 = 1,50 \text{ x } 10^{-3} \\ HC^{2-} + H_2O \leftrightarrow C^{3-} + H_3O^+ & \text{Ka}_3 = 2,40 \text{ x } 10^{-8} \end{array}$$

Esboce um gráfico de distribuição das espécies e calcule o pH de uma solução 0,010 mol L⁻¹ deste ácido.

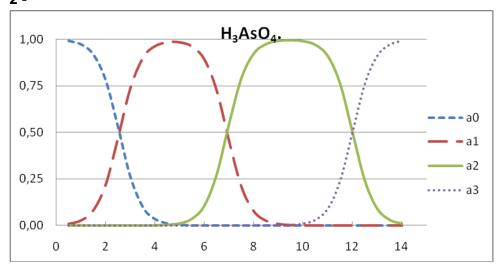
- **6 –** O ácido diprótico H_2A possui $pK_1 = 4,00$ e $pK_2 = 8,00$.
 - (a) Em qual pH $[H_2A] = [HA^-]$?
 - (b) Em qual pH $[HA^{-}] = [A^{2-}]$?
 - (c) Qual é a principal espécie em pH 2,00: H₂A, HA⁻ ou A²⁻?
 - (d) Qual é a espécie principal em pH 6,00?
 - (e) Qual é a espécie principal em pH 10,00?
- **7 –** A base B possui $pK_b = 5,00$.
 - (a) Qual o valor de pKa para o ácido BH⁺?
 - (b) Em qual pH, $[BH^{+}] = [B]$?
 - (c) Qual a espécie principal em pH 7,00; B ou BH⁺?
 - (d) Qual o quociente [B]/[BH⁺] em pH 12,00?
- **8 –** Calcule α_{H2A} , α_{HA} -, e α_{A^2} para o ácido cis-butenodioico em pH 1,00; 1,91; 6,00; 6,33 e 10,00.
- **9 –** (a) Deduza as equações para α_{H3A} , α_{H2A} -, α_{HA} 2-, e $\alpha_{A^{3-}}$ para um sistema tripótico.
 - (b) Calcule os valores dessas frações para o ácido fosfórico em pH 7,00.
- **10 –** Quantos gramas de Na₂CO₃ (PM 105,99) devem ser misturados com 5,00 g de NaHCO₃ (PM 84,01) para se ter 100 mL de tampão com pH 10,00?

SABARITO:

1 – a)

d)

pH = 2,49


 $[H_3O^+] = 3,194 \times 10^{-3} \text{ mol L}^{-1}$

 $[OH^{-}] = 3,12 \times 10^{-12} \text{ mol L}^{-1}$

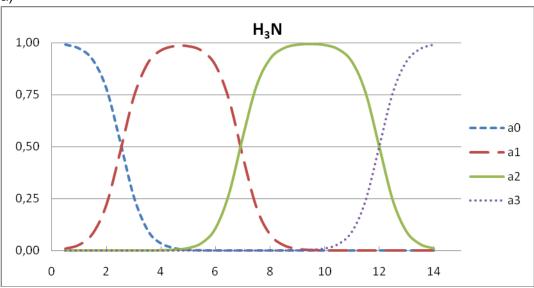
 $[H_2X] = 0,00681 \text{ mol L}^{-1}$

 $[HX^{-}] = 0.0031949 \text{ mol L}^{-1}$ $[X^{2^{-}}] = 1.8 \times 10^{-7} \text{ mol L}^{-1}$

2 -

pH = 4.7

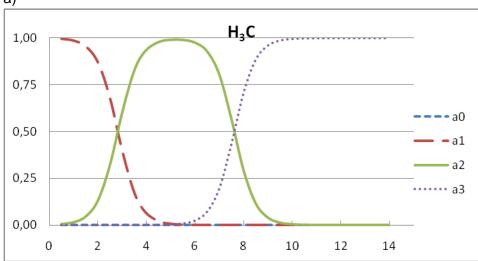
3 -


 $[H_3Cit] = 0.005769 \text{ mol } L^{-1};$

 $[H_2Cit^-] = 0.038304 \text{ mol } L^{-1};$

 $[HCit^{2-}] = 0,005906 \text{ mol } L^{-1}$ $[Cit^{3-}] = 0,000021 \text{ mol } L^{-1}$

4 –


a)

- b) pH = 4.74
- c) pH = 9.31
- d) pH = 10

5 -

a)

- b) pH = 1,95
- **6 –** (a) 4,00
- (b) 8,00
- (c) H_2A
- (d) HA
- (e) A²⁻

- **7 –** (a) 9,00
- (b) 9,00
- (c) BH⁺
- (d) 1.0×10^3

8 – α_{HA^-} = 0,110; 0,500; 0,682; 0,500; 2,15 x 10⁻⁴

9 – (b) 8.6×10^{-6} ; 0.61; 0.39; 2.7×10^{-6}

10 – 2,96 g