Universidade Federal Fluminense Departamento de Química Analítica Química Analítica 1 Prof. Wagner Felippe Pacheco

4ª Lista de Exercícios:

1ª Questão.

Qual o pH das seguintes soluções a 25 $^{\circ}$ C, considere I = 0,500 mol L⁻¹.

- a) $NH_4NO_3 0.01 \text{ mol } L^{-1}$, $Kb_{NH^3} = 1.75 \times 10^{-5}$
- b) NaF 0,05 mol L⁻¹ Ka _{HF} = $6,75 \times 10^{-4}$
- c) $CH_3CH_2NH_3Cl\ 0,20\ mol\ L^{-1}$, $Kb_{etilamina} = 4,28\ x\ 10^{-4}\ mol\ L^{-1}$
- d) NH₄F 0,025 mol L⁻¹; Ka _{HF} = 6,8 x 10^{-4}
- e) $C_2H_5NH_3Cl\ 0,013\ mol\ L^{-1}$;

2ª Ouestão.

Compostos covalentes geralmente possuem pressão de vapor maior que os compostos iônicos. O odor desagradável de peixe resulta das aminas presentes no peixe. Explique por que espremer o limão (que é ácido) sobre o peixe reduz este odor.

3ª Questão.

Calcula a fração de dissociação (α) para as soluções de acetato de sódio 1,00 x 10⁻¹, 1,00 x 10⁻² e 1,00 x 10⁻⁴. O valor de α aumenta ou diminui com a diluição ?

4ª Questão.

Um tampão foi preparado pela dissolução de 0,100 mol de ácido fraco HA (Ka = 1,00 x 10^{-5}) mais 0,050 mol de sua base conjugada (NaA) em 1,00 L de solução. Desenvolva a equação de Henderson e encontre o pH desta solução.

5ª Questão.

Escreva a equação de Henderson para uma solução de ácido fórmico/formiato de sódio. Calcule o quociente HCOO-HCOOH em: a) pH = 3,000; b) pH = 3,745 e c) pH = 4,000. Dados: pKa = 3,745.

6ª Questão.

Uma tampão foi preparado pela adição de 1,000 mol de ácido propanóico CH_3CH_2COOH (Ka = 1,34 x 10^{-5}) e 0,950 mol de propanoato de potássio CH_3CH_2COOK em 1 L.

- a) Qual o pH desta solução ?
- b) Qual o pH se 0,050 mol de HCl for adicionado (considerando o mesmo volume final)?
- c) Qual o pH quando 0,050 mol de Ca(OH)₂ for adicionado (considerando o mesmo volume final) ?
- d) Qual o valor de β para este tampão ?

Dados:

A = 0,5085; B = 0,3290

íon	d
H_3O^+	9
OH ⁻	3
F ⁻	3
NH ₄ ⁺	3
CH ₃ CH ₃ NH ₂ ⁺	3

Respostas:

1ª Questão.

Letra	pН
a)	5,45
b)	7,93
c)	5,62
d)	6,08
e)	6,21

3ª Questão.

Cs	$\alpha_1 \left\{ Ac^{\cdot}/(HAC + Ac^{\cdot}) \right\}$
10-1	1,000
10^{-2}	1,000
10^{-4}	0.976

O valor de α_1 diminui com a diluição

4ª Questão.

R: 4,70

5ª Questão.

R: = 0,180; 1,00; 1,80

6ª Questão.

a)
$$pH = 4,8477$$

b)
$$pH = 4,8030; \beta = 1,118$$

c)
$$pH = 4,9369$$
; $\beta = 1,121$