Universidade Federal Fluminense Departamento de Química Analítica Química Analítica 1 Prof. Wagner Felippe Pacheco

1ª Lista de Exercícios:

1ª Questão.

Calcule a concentração molar analítica de cada soluto após a diluição da solução inicial.

- a) 20 mL de HCl 0,05 mol L⁻¹ para 100 mL.
- b) 200 mL de KCl 0,8 mol L⁻¹ para 1,6 L
- c) 10 mL de NaOH 0,1% p/v para 100 mL
- d) 10 mL NaCl 0,1 mol L⁻¹ + 10 mL NaCl 0,5 molL⁻¹ para 100 mL
- e) 50 mL de KCl 0,5 mol L⁻¹ para um volume final de 100 mL, depois de ser avolumado e homogenizado, uma alíquota de 20 mL desta solução foi transferida para um recipiente de 50 mL, e avolumado com água.
- f) 10 mL HCl 0,2 mol L⁻¹ + 20 mL HCl 3,65% p/v + 30 mL de HCl 1 mol L⁻¹ para 200 mL de solução.
- g) 20 mL Cu(NO₃)₂ 100 ppm para 150 mL.
- h) 50 μL de AgNO₃ 1000 ppm para 50 mL.
- i) 70 μL de FeCl₃ 500 ppm + 10 mL de FeCl₃ 1% (m/v) para 250 mL.

2ª Questão.

Calcule a concentração molar no equilíbrio de cada espécie do exercício anterior (todos são eletrólitos fortes)

3ª Questão.

Calcule a força Iônica para cada solução e a atividade de cada espécie (usando a teoria de Debye-Huckel estendida)

Dados:

A = 0.5085; B = 0.3290,

Íon	d
H^{+}	9
C1 ⁻	3
Cl ⁻ K ⁺ Na ⁺	3
Na ⁺	4
OH ⁻	3
Cu ²⁺ NO ₃ Fe ³⁺	6
NO_3	3
Fe ³⁺	9
Ag^+	3

4ª Questão.

A seguinte reação química: $SO_{2(g)} + NO_{2(g)} \leftrightarrow NO_{(g)} + SO_{3(g)}$ possui constante de equilíbrio igual a 85. Imaginando que uma reação química tenha sido iniciada a partir de 0,050 mol de NO_2 e SO_2 (confinados em um recipiente de 1,00 L), pergunta-se qual é a concentração de todas as espécies no equilíbrio.

Resposta.

1ª Questão.

- a) 0,01 mol L⁻¹
- b) 0,1 mol L⁻¹
- c) $2.5 \times 10^{-3} \text{ mol L}^{-1}$
- d) 0,06 mol L⁻¹
- e) 0,1 mol L⁻¹
- f) 0,26 mol L⁻¹
- g) 7,11 x 10⁻⁵ mol L⁻¹
- h) 5,89 x 10⁻³ mol L⁻¹
- i) $3,33 \times 10^{-3} \text{ mol L}^{-1}$

2ª Questão.

- a) $[H^+] = 0.01 \text{ mol } L^{-1}$, $[Cl^-] = 0.01 \text{ mol } L^{-1}$
- b) $[K^+] = 0.1 \text{ mol } L^{-1}$, $[Cl^-] = 0.1 \text{ mol } L^{-1}$
- c) $[Na^+] = 2.5 \times 10^{-3} \text{ mol L}^{-1}$, $[OH^-] = 2.5 \times 10^{-3} \text{ mol L}^{-1}$
- d) $[Na^+] = 0.06 \text{ mol } L^{-1}$, $[Cl^-] = 0.06 \text{ mol } L^{-1}$
- e) $[K^+] = 0.1 \text{ mol } L^{-1}, [Cl^-] = 0.1 \text{ mol } L^{-1}$
- f) $[H^+] = 0.26 \text{ mol } L^{-1}$, $[Cl^-] = 0.26 \text{ mol } L^{-1}$
- g) $[Cu^{2+}] = 7.11 \times 10^{-5} \text{ mol } L^{-1}; [NO_3^-] = 1.42 \times 10^{-4} \text{ mol } L^{-1}$
- h) $[Ag^+] = 5.89 \times 10^{-3} \text{ mol L}^{-1}; [NO_3^-] = 5.89 \times 10^{-3} \text{ mol L}^{-1}$
- i) $[Fe^{3+}] = 3.33 \times 10^{-3} \text{ mol } L^{-1}$; $[Cl^{-}] = 9.99 \times 10^{-3} \text{ mol } L^{-1}$

3ª Questão.

Letra	Força Iônica	{cátion}	{ânion}
	(mol L ⁻¹)	(mol L-1)	(mol L ⁻¹)
a)	1,00x 10 ⁻⁰²		8,99 X 10 ⁻⁰³
b)	1,00 X 10 ⁻⁰¹	7,54X 10 ⁻⁰²	7,54 X 10 ⁻⁰²
c)	2,50X 10 ⁻⁰³		2,36 X 10 ⁻⁰³
d)	6,00X 10 ⁻⁰²		4,76 X 10 ⁻⁰²
e)	1,00X 10 ⁻⁰¹	7,54X 10 ⁻⁰²	7,54 X 10 ⁻⁰²
f)	2,60X 10 ⁻⁰¹		1,75 X 10 ⁻⁰¹
g)	1,42X 10 ⁻⁰⁴		1,40 X 10 ⁻⁰⁴
h)	5,89X 10 ⁻⁰³		5,42 X 10 ⁻⁰³
i)	9,99X 10 ⁻⁰³	1,48X 10 ⁻⁰³	8,98 X 10 ⁻⁰³

4ª Quetão.

$$[SO_2] = [NO_2] = 0,0049 \ mol \ L^{\text{-}1}$$

$$[NO] = [SO_3] = 0.045 \text{ mol L}^{-1}$$